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Abstract

Finite element modeling has been used to study the development of pile-up during indentation with a rigid sphere as

it relates to the measurement of mechanical properties by load and depth sensing indentation. A wide range of materials

with different elastic moduli, yield stresses, strain-hardening exponents, and friction coefficients were examined. Results

show that during a significant portion of the spherical indentation process, the amount of pile-up cannot be related

solely to the strain-hardening exponent, as is often assumed. Rather, after initially sinking-in at small depths of pen-

etration, the pile-up for many materials evolves and increases gradually as the indenter is driven into the material. Even

when deformation enters the fully developed plastic stage, the pile-up geometry continues to change in manner that can

significantly affect the contact area. It is also shown that contact friction affects the pile-up geometry, and that the pile-

up heights before and after the indenter is unloaded can be quite different. Implications for the measurement of

mechanical properties by load and depth sensing indentation methods are discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In measuring material properties by load and depth sensing indentation methods, it is essential that the

contact geometry be established precisely since analysis procedures used to determine properties like the

hardness, H , and elastic modulus, E, rely heavily on an accurate determination of the contact area (Oliver
and Pharr, 1992; Pharr, 1998). However, measurement of the contact area from indentation load-depth
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data is not necessarily a straightforward process, as it depends on the amount pile-up or sink-in of material

around the contact impression. Bolshakov and Pharr (1998) examined the significance of pile-up for rigid

conical indenters and found that if pile-up is neglected, the true contact area can be underestimated by as

much as 60%, leading to similar errors in calculated material properties. Thus, a complete understanding
indentation of pile-up and sink-in is crucial to making accurate property measurements.

For conical and pyramidal indenters, the amount of pile-up or sink-in is not a function of the inden-

tation depth. For spherical indenters, on the other hand, the pile-up and sink-in geometry may change

significantly during indentation by virtue of the transition from purely elastic deformation at small depths

to plastically dominated behavior at large depths. The contact geometry for spherical indentation is

illustrated in Fig. 1, which shows a rigid sphere of radius R driven into a material by a force P to a pen-
etration depth h. The right-hand side of the figure shows the behavior when material sinks-in and the left-
hand side when it piles-up. Because of sink-in and pile-up, the contact depth, hc, which is the actual depth
along which contact is made between the specimen and indenter, may differ from the total indenter pen-

etration depth, h. In addition, there will be two contact radii of interest: the actual radius of contact, ac, and
the surface contact radius, a, defined by the intersection of the indenter with the original undeformed
surface. The surface contact radius is that which would be determined from the measured depth of pen-

etration if there were no pile-up or sink-in. The amount of pile-up or sink-in can be characterized by the

height, s, of the pile-up or sink-in relative to the undeformed surface, where s > 0 for pile-up and s < 0 for
sink-in. The parameter b, which is related to the amount of strain induced by the indenter and therefore
changes with depth of penetration, is the angle between the tangent line to the contact at its periphery and
the undeformed surface. Note that when the load is removed, the contact impression may partially or

totally recover by elastic processes.

It is useful to consider the pile-up and sink-in behavior during spherical indentation in terms of the

deformation regimes suggested by Johnson (1985). Letting pm be the mean pressure under the indenter
and ry the yield stress, Johnson found that there is a unique correlation between E=ry tan b, the ratio of
the strain imposed by the indenter (tan b) to the elastic strain the material can accommodate before
yielding (ry=E), and the normalized contact pressure, pm=ry. The parameter pm=ry is also called the
‘‘constraint factor’’ because it characterizes the extent to which elastic material surrounding the contact
impression inhibits yielding and plastic deformation during indentation. Johnson identified three dis-

cernible indentation regimes based on observed relationships between pm=ry and E=ry tan b: (1) the elastic
regime at small loads and depths, where contact is strictly elastic and there is a linear increase of pm=ry
with E=ry tan b; (2) the elastic–plastic transition regime, in which plasticity commences beneath the surface

and pm=ry increases linearly with logðE=ry tan bÞ; and (3) the fully plastic regime, in which plasticity

escapes to the free surface and the release of constraint causes pm=ry to stabilize at a relatively constant
value of about 3.
Fig. 1. Spherical indentation contact geometry. Important parameters are: indenter radius, R; load, P ; depth of penetration, h; contact
depth, hc; true contact radius, ac; surface contact radius, a; pile-up/sink-in height, s.
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The behavior of spherical indentation in the elastic regime is well described by the theory of Hertz

(1896). For this strictly elastic deformation, the contact periphery sinks-in by an amount exactly equal to

half the total depth of penetration. Thus, both the sink-in of the surface at the contact edge, s, and the
contact depth, hc, are equal to h=2 (see Fig. 1). When the contact is unloaded, the contact fully recovers and
no residual hardness impression remains. At the other extreme, indentation at large depths in the fully

plastic regime causes a permanent hardness impression to be formed, but whether the indentation piles-up

or sinks-in depends on the strain-hardening characteristics of the material (Tabor, 1951; Hill et al., 1989;

Biwa and Storakers, 1995; Norbury and Samuel, 1928; Matthews, 1980; Field and Swain, 1995; Francis,

1976; O’Neil, 1944). Hill et al. provided an analysis based on deformation theory to examine the limiting

behavior for plastic materials exhibiting simple power-law hardening of the form r ¼ Ken, where r is the
stress, e is the strain, K is the strain hardening coefficient, and n is the strain hardening exponent. They
found that the degree of pile-up or sink-in is a unique function of n that can be conveniently described
through a parameter c2 ¼ a2c=2Rh. In the limit of small penetration depths, c

2 has a simple physical

interpretation: it is the ratio of the depth along which contact is made to the total depth of penetration,

hc=h. Thus, c2 < 1 implies that material sinks-in, while c2 > 1 means that material piles up. Hill et al. found
that the relationship between n and c2 can be approximated as
Fig. 2.
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Later, Biwa and Storakers (1995) reexamined the problem using the flow theory of plasticity and obtained

qualitatively similar results, although with slightly different numerical predictions for the extent and form of

the pile-up and sink-in.

Fig. 2 compares the predictions of the theoretical analyses of Hill et al. and Biwa and Storakers to
experimental data for a variety of metals obtained by Norbury and Samuel (1928). In this plot, the degree

of pile-up and sink-in is represented by the normalized pile-up parameter s=h (see Fig. 1), where
s=h ¼ c2 � 1. Also shown in the figure is the empirical relation suggested by Matthews (1980):
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Experimental data of Norbury and Samuel (1928) showing the dependence of the pile-up parameter, s=h, on the strain-
ing exponent, n. Shown for comparison are the models developed by Matthews (1980), Hill et al. (1989), and Biwa and
ers (1995).
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which appears to provide a slightly better fit of the experimental data. The relatively good agreement

between theory and experiment suggests that pile-up and sink-in in the fully plastic regime can indeed be

uniquely related to the strain hardening exponent, n.
The fact that the amount of pile-up and sink-in in the limit of fully plastic behavior depends only on the

strain hardening exponent is a useful result for those interested in measuring mechanical properties by load

and depth sensing indentation methods since it provides a means by which the contact area can be corrected

for the influences of pile-up. For example, the observations in Fig. 2 form the basis of an approach

developed by Field and Swain (1995) for measuring stress–strain curves and strain hardening exponents

directly from load and depth sensing spherical indentation data. However, approaches like these ignore the

fact that a significant portion of the data in a spherical indentation experiment can be in the elastic–plastic

transition regime, for which fully plastic analyses may not apply.

In this work, the finite element method is used to explore and characterize the evolution of pile-up in the
elastic–plastic transition. The approach adopted is similar to that used by Mesarovic and Fleck (1999), but

with the specific objective of providing greater detail about the pile-up/sink-in behavior rather than

describing the spherical indentation process in general. It is shown that the amount of pile-up and sink-in

changes significantly during the elastic–plastic transition in a manner that depends on the elastic and the

plastic properties of the material. Furthermore, although the behavior at large penetration depths ap-

proaches that predicted in the analyses of Hill et al. and Biwa and Storakers, the transition over which the

pile-up height changes extends to much greater depths than would be expected based on normal indicators

of the onset of full plasticity. Important effects of frictions are identified, and it is shown that there can be
significant changes in the pile-up geometry after unloading. Collectively, the observations suggest that the

influences of pile-up on spherical indentation are quite complex and not well-suited to correction by

methods based on fully plastic analyses. The practical implications for load and depth sensing indentation

testing are discussed.
2. Finite element simulation

Simulation of the spherical indentation process was performed using the ABAQUS� finite element (FE)

code. As shown in Fig. 3, an axisymmetric formulation was employed using a cylindrical coordinate system

with radial coordinate, r, and axial coordinate, z. The indenter was modeled as a rigid sphere of radius
R ¼ 1–50 mm, depending on the indentation regime of interest, and the specimen as a cylinder 20 mm in

radius and 20 mm in height discretized into 1746 linear four-node elements. The indentation depth and

indenter radius were coordinated so that the contact radius never exceeded 1 mm. Roller boundary con-

ditions were applied at the bottom surface by enforcing no displacements in the z direction and free
movement in the r direction. Symmetry boundary conditions were applied along the centerline, and a free
surface was modeled at the outside of the specimen and on the top surface outside the region of contact. In

most computations, a friction coefficient l ¼ 0:2 was used to describe the interface between the indenter
and the specimen, although in a limited number of simulations the influences of friction were examined
using l ¼ 0:0, 0.1, 0.2, and 1.0.
Fig. 4 shows the assumed elastic–plastic constitutive law. Linear elastic behavior with Young’s modulus

E and Poisson’s ratio m ¼ 0:3 was assumed up to the yield stress ry. Thereafter, the behavior was modeled as
elastic–plastic with power-law hardening of the normal form r ¼ Ken. To assure continuity at the yield
point, the strength coefficient, K, was related to the other material parameters through K ¼ ry=ðry=EÞn (see
Fig. 4). A strain rate independent model based on Mises flow theory with isotropic hardening was used in

all computations.

The pile-up/sink-in behavior was systematically characterized in the way it depends on the normalized
depth of penetration, h=R, the ratio of the modulus to the yield strength, E=ry, the strain hardening



Fig. 3. The finite element mesh: (a) overall; (b) detail in the region of contact.

Fig. 4. A schematic representation of the elastic–plastic constitutive law used in the finite element simulations.
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exponent, n, and the friction coefficient, l. To cover a wide variety of elastic–plastic materials, values of
E=ry were varied over the range 206E=ry6 1500, which covers most metals, ceramics, and glasses. An
ideal elastic material (E=ry ! 0) and a rigid-plastic material (E=ry ! 1) were also examined to establish
important limits. Simulations were performed for elastic–perfectly-plastic materials (n ¼ 0) as well as strain
hardening materials with n ¼ 0:25 and 0.5. Throughout the work, both loaded and unloaded indentations
were examined to establish how the pile-up geometry changes when the indenter is withdrawn. The com-

puted parameters of interest included the contact radii, ac and a, the contact depth, hc, the pile-up/sink-in
height, s, the load, P , and the contact profile geometry (see Fig. 1).
3. Results and discussion

3.1. Influence of elastic deformation on pile-up

How the pile-up evolves during the course of spherical indentation is strongly dependent on the relative

amounts of elastic and plastic deformation as characterized by the ratio of the elastic modulus to yield

stress, E=ry. Johnson (1970, 1985) noted that this parameter physically represents the reciprocal of the
elastic strain at yielding and can therefore be used as a measure of the amount of deformation that is

accommodated elastically during indentation. In the limit E=ry ¼ 0, contact is strictly elastic and domi-
nated by sink-in in the manner prescribed by Hertzian contact mechanics (Hertz, 1896). At the other ex-

treme, the limit E=ry ¼ 1 corresponds to rigid-plastic deformation, for which there is extensive pile-up of
material around the hardness impression (Hill et al., 1989; Biwa and Storakers, 1995). The intervening

elastic–plastic behavior was examined by finite element simulation.

Fig. 5 shows finite element predictions of indentation profiles under load for several different materials

deformed to the same normalized penetration depth h=R ¼ 0:2 and a friction coefficient l ¼ 0:2. The
materials were a purely elastic solid, a rigid/perfectly-plastic solid, and three elastic/plastic solids with

E=ry ¼ 20, 100, and 1000 and no strain hardening (n ¼ 0). Sink-in is observed in the elastic material as well
as the elastic/plastic material with E=ry ¼ 20. The material with E=ry � 100 exhibits a small amount of pile-
up, while pile-up is extensive for the material with E=ry ¼ 1000. After unloading, the contact geometry
changes due to elastic recovery, as shown in Fig. 6. In order to make this figure directly comparable to Fig.

5, the values of h and a at full load were used to normalize the unloaded profiles. As expected, the purely
Fig. 5. Loaded indentation profiles for h=R ¼ 0:2, n ¼ 0, and l ¼ 0:2 showing the influence of E=ry on the pile-up/sink-in behavior.



Fig. 6. Indentation profiles for h=R ¼ 0:2, n ¼ 0, and l ¼ 0:2 corresponding to those in Fig. 5 after unloading. To facilitate comparison
to Fig. 5, values of h and a at full load were used to normalize the axes.
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elastic material recovers completely. Recovery is also large for the material with E=ry ¼ 20, but there is
little recovery for the material with E=ry ¼ 1000 due to the fact that deformation at these strains is
dominated by plasticity.

Fig. 7 shows how the normalized pile-up parameter s=h varies with E=ry for h=R ¼ 0:2 and l ¼ 0:2. For
loaded indentations in purely elastic materials (E=ry ¼ 0), the pile-up parameter is )0.5, in agreement with
Hertzian contact mechanics. With increasing E=ry, the value rises to s=h ¼ 0 at E=ry � 100, becomes
positive for materials with higher E=ry, and reaches a nearly constant value when E=ry � 1000. For rigid/
plastic materials (E=ry ¼ 1), s=h ¼ 0:38 in relatively good agreement with the predictions of Hill et al.
(1989) and Matthews (1980). After unloading, s=h ¼ 0 for elastic materials (E=ry ¼ 0) but grows larger with
increasing E=ry. In the limit of rigid-plastic behavior (E=ry ¼ 1), there is no elastic recovery and s=h
remains unchanged at 0.38.

Collectively, these observations demonstrate that: (1) the pile-up/sink-in geometry depends of the rel-

ative amounts of elastic and plastic deformation as determined by the value of E=ry, and (2) due to elastic
Fig. 7. Dependence of the pile-up parameter, s=h, on E=ry for h=R ¼ 0:2, n ¼ 0, and l ¼ 0:2. Data for loaded and unloaded inden-
tations are included.
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recovery, the geometry of loaded and unloaded contact impressions may be very different, especially for

smaller values of E=ry.
3.2. Dependence of pile-up on penetration depth

Fig. 8 shows how the pile-up and sink-in behavior depends on the normalized penetration depth h=R for
elastic/perfectly-plastic materials (n ¼ 0; l ¼ 0:2). To capture measurable amounts of both sink-in and pile-
up, the simulations were performed for a material with E=ry ¼ 200. At small depths, the material deforms
only elastically, and the indentation profile corresponds to that of Hertzian contact with s=h ¼ �0:5. First
yielding occurs at h=R � 1:4	 10�4 and a mean pressure pm � 1:1ry in a region in the material on the axis
of symmetry below the surface at z � 0:5ac, also in accordance with Hertzian contact theory (see Tabor,
1951). As the load on the indenter is increased, the plastic zone grows and spreads upward, and the sink-in

diminishes. At h=R of about 0.08, material starts to pile-up, and with further penetration, the pile-up be-
comes larger.

Fig. 9 shows the indentation profiles after unloading. In addition to the normalized depths h=R at which
the profiles were determined, the figure also includes the values of the normalized surface radii a=R in order
to provide a sense of the radial extent of the contact. The largest contact, h=R ¼ 0:34, corresponds to
a=R ¼ 0:75 and thus a contact radius that is 75% of the indenter radius. As expected, full elastic recovery is
observed when h=R6 1:4	 10�4. For greater depths, the extent of the recovery diminishes with increasing
h=R, and the residual contact impression always exhibits some pile-up.
Fig. 10 compares the depth dependence of the pile-up parameter s=h in both the loaded and unloaded

conditions. Although the two curves converge at large depths, it is clear that the loaded and unloaded

indentations can be very different due to elastic recovery, especially when h=R < 0:1. It is also notable that
an upper limiting value for s=h is not reached at the maximum depth of penetration (h=R ¼ 0:34 and
a=R ¼ 0:75). This is important because it shows that the pile-up geometry can continue to change signif-
icantly even up to contact radii in excess of 0:75R, a value near the upper end of most indentation
experiments. Thus, in addition to its dependence on E=ry, the pile-up height is a strong function of the
depth of penetration.
Fig. 8. Loaded indentation profiles for E=ry ¼ 200, n ¼ 0, and l ¼ 0:2 showing the influence of the normalized penetration depth, h=R,
on the pile-up/sink-in behavior.



Fig. 9. Indentation profiles for E=ry ¼ 200, n ¼ 0, and l ¼ 0:2 corresponding to those in Fig. 8 after unloading. To facilitate com-
parison to Fig. 8, values of h and a at full load were used to normalize the axes.
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3.3. Dependence of pile-up on contact friction

Contact friction can also affect the pile-up behavior, especially in materials with large E=ry and small n.
The effects of friction are demonstrated in Fig. 11, which shows loaded indentation profiles at h=R ¼ 0:2 for
four different friction coefficients: l ¼ 0:0, 0.1, 0.2, and 1.0. The plot includes data for an elastic/perfectly-
plastic material with E=ry ¼ 1000 and n ¼ 0 and an elastic/strain-hardening-plastic material with

E=ry ¼ 1000 and n ¼ 0:5. Clearly, frictional effects are most important in materials that do not strain
harden; there is a strong tendency for pile-up to develop in these materials, and friction acts to reduce it. On
the other hand, for strongly hardening materials (n ¼ 0:5), there is no discernable effect of friction, but there
is also no tendency to pile-up. The reason that pile-up is diminished in strain-hardening materials is that

localized hardening near the contact periphery impedes plasticity near the surface, driving the plastic zone

deeper into the material rather than radially outward.



Fig. 11. Effect of contact friction on the indentation profile for h=R ¼ 0:2, E=ry ¼ 1000, and n ¼ 0:0 and 0.5.
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3.4. Combined effects of elasticity and depth of penetration

Comparison of Figs. 5 and 8 reveals some important similarities about the effects of elasticity and the

depth of penetration on the pile-up behavior, specifically, increasing h=R is qualitatively similar to

increasing E=ry. This is not just mere coincidence but results from the fact that both parameters are related
to the relative amount of elastic and plastic deformation during contact. Deformation is largely elastic
when E=ry and h=R are small, but becomes more plastic as they increase. In this sense, one might expect
that the two parameters could be combined into a single parameter that provides a unified description of

the pile-up behavior. A natural choice is E=ry tan b, as used by Johnson to correlate the constraint factor
pm=ry with material parameters and the contact geometry. In such a description, the depth dependence is
embodied in the way that b increases with h=R (see Fig. 1). To explore this possibility, the dependence of the
pile-up parameter s=h for two extreme elastic–perfectly-plastic materials (E=ry ¼ 20 and 2000) is plotted in
Fig. 12 as a function of two parameters that approximate to E=ry tan b but can be estimated from

indentation load and depth data. The parameters are: (1) tan b ffi ac=R, and (2) tan b ffi 2hc=ac. The former
is a first-order approximation often used to describe spherical indentation at small depths. The latter is a

second-order approximation that is more accurate at larger depths. The plot shows that the pile-up data
Fig. 12. The correlation of the pile-up parameter, s=h, with the parameters ðE=ryÞð2hc=acÞ and ðE=ryÞða=RÞ.
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converge remarkably well when ðE=ryÞð2hc=acÞ is used as the unifying parameter. The parameter

ðE=ryÞðac=RÞ also provides a reasonable approximation, but it is not as good as ðE=ryÞð2hc=acÞ when E=ry
is small and ac=R is large.
Note that in a formal sense, the modulus E used in the plotting parameters should be the plane strain

modulus E� ¼ E=ð1� m2Þ (Johnson, 1985) rather than Young’s modulus, E. For the value m ¼ 0:3 used in all
the finite element calculations, E� is slightly higher than E (about 10%), and the plotting parameters should
be adjusted accordingly if the Poisson effect is to be included.
3.5. Influences of strain hardening

The use of ðE=ryÞð2hc=acÞ as a unifying parameter was found to work equally well for strain hardening
materials. Fig. 13 summarizes the observed correlations between s=h and ðE=ryÞð2hc=acÞ for materials with
l ¼ 0:2 and strain hardening exponents n ¼ 0:0, 0.25, and 0.50. The filled plotting symbols represent the
pile-up parameter when the indenter is fully loaded and the open symbols the behavior after unloading. The

results were obtained in a series of simulations in which E=ry was varied systematically from 20 to 1500 and
R from 1 to 50 mm, so that s/h was calculated over the range 16 ðE=ryÞð2hc=acÞ6 1000. The curves are
composites of the unified behavior observed for each value of n. For materials with small E=ry, some
deviation was observed at large depths, where the curves peaked and exhibited a downturn prior to

reaching the relatively constant value at ðE=ryÞð2hc=acÞ > 1000. Mesarovic and Fleck (1999), who exam-
ined this behavior in detail, attributed it to a combination of elastic influences and finite deformation effects

at large strain that cannot be accounted for in the plastic analysis of Hill et al. (1989). Because of this,

caution should be exercised in applying the results in Fig. 13 to situations of large h=R at small E=ry. The
work of Mesarovic and Fleck (1999) should be consulted to provide guidelines as to when these effects may

be important.

A number of features in Fig. 13 are worthy of note. First, at small ðE=ryÞð2hc=acÞ, the behavior is
independent of strain hardening because the material deforms only elastically. Loaded indentations sink-in

to s=h ¼ �0:5, as predicted by Hertzian contact mechanics, and the indentations fully recover after
unloading giving s=h ¼ 0. Plasticity commences at ðE=ryÞð2hc=acÞ � 2:5, also as predicted by Hertzian
mechanics, but even then there is essentially no dependence on strain hardening because yielding begins well

beneath the surface and the initial stages of plastic deformation are highly constrained by the surrounding

elastic material. Only when the plasticity breaks through to the surface at ðE=ryÞð2hc=acÞ � 10 do strain
Fig. 13. Dependence of the pile-up parameter, s=h, on ðE=ryÞð2hc=acÞ for l ¼ 0:2 and n ¼ 0, 0.25, and 0.5. Data for loaded and
unloaded indentations are included.



Fig. 14. Dependence of the normalized mean contact pressure, pm=ry, on ðE=ryÞð2hc=acÞ for elastic–perfectly-plastic materials with
n ¼ 0 and l ¼ 0:2.
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hardening effects become apparent. Thereafter, the pile-up grows in a manner that depends on the strain

hardening exponent, with larger pile-up produced in materials with smaller n. The pile-up is fully developed
and s=h ceases to increase only when ðE=ryÞð2hc=acÞ > 1000. The values of s=h in the rigid-plastic limit
[ðE=ryÞð2hc=acÞ ! 1] are consistent with the models of Hill et al. (1989), Biwa and Storakers (1995), and
Matthews (1980), data points for which are included at the rigid-plastic limit at the right-hand side of the

plot. Note that there is large pile-up for n ¼ 0, sink-in predominates for n ¼ 0:5, and materials with
n ¼ 0:25 show neither pile-up nor sink-in. These observations are in agreement with the analysis of Hill
et al. (1989) which shows that the cross-over from sink-in to pile-up should occur at n ¼ 0:22.
Another noteworthy feature in Fig. 13 concerns the fact that pile-up is not fully developed until

ðE=ryÞð2hc=acÞ � 1000. This is particularly interesting when compared to the data in Fig. 14, which shows
the corresponding development of the constraint factor, pm=ry, for a material with n ¼ 0. Fig. 14 suggests
that fully developed plasticity, as conventionally defined by the point at which the constraint factor levels
off at a value of about 3, commences at the much smaller value ðE=ryÞð2hc=acÞ � 100. Thus, the pile-up
geometry continues to change well after the traditional beginning of full plasticity, and one cannot use the

observation of a relatively constant constraint factor as an indication that pile-up is also fully developed.

To help further illustrate this point, it is useful to consider some typical numbers. For E=ry ¼ 10, 100, and
1000, the contact depths at which ðE=ryÞðtan bÞ ¼ 1000 are 99%, 90%, and 29% of the sphere radius,

respectively. Thus, fully developed pile-up consistent with the predictions of plasticity theory is experi-

mentally achievable only in materials with very large E=ry, i.e., the softer metals. For other materials, the
pile-up geometry can be expected to change continuously during the course of an indentation experiment.
Although not explicitly noted, this same behavior is also observed in the finite element results of Mesarovic

and Fleck (1999).

Another important observation in Fig. 13 concerns the pile-up geometry after unloading. The results

indicate that over a considerable range of ðE=ryÞð2hc=acÞ, the pile-up before and after unloading can be
greatly different due to elastic recovery. Thus, analysis of residual contact geometries based on models for

rigid-plastic behavior may not be appropriate for materials with smaller E=ry. Moreover, functional rela-
tionships for s=h developed from observations of residual hardness impressions may not apply to load and
depth sensing indentation experiments, for which indentations are analyzed primarily in the loaded condition.
3.6. Implications for load and depth sensing indentation

The primary objective of this work is to give investigators who measure mechanical properties by load
and depth sensing indentation techniques some insight into the amount of pile-up or sink-in that can be

expected at various points in the spherical indentation process. In principle, this can be accomplished from
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the data in Fig. 13 if one has some idea of the material parameters E=ry and n. However, estimation of the
pile-up parameter is not necessarily straightforward, since the independent parameter 2hc=ac used in Fig. 13
is not directly measurable in load and depth sensing experiments. To rectify this, it is suggested that a first

estimate of the pile-up or sink-in behavior can be obtained by approximating 2hc=ac with 2h=a, which can
be determined from the total measured depth, h, and the geometric relation a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rh� h2

p
. Considering the

limiting cases of purely elastic deformation with maximum sink-in (s=h ¼ �0:5), and rigid–perfectly-plastic
behavior with maximum pile-up (s=h ¼ 0:36), simple geometric considerations show that 2h/a deviates from
2hc=ac by no more than a factor of 1.5, with the two being much closer under most circumstances. Because
the abscissa in Fig. 13 is logarithmic, differences of a factor of 1.5 are not particularly significant in their

effect on s=h. Thus, an approximation of the pile-up or sink-in can be obtained from Fig. 13 by using 2h=a
to approximate 2hc/ac.
4. Conclusions

Finite element simulations have shown that pile-up and sink-in during spherical indentation of elastic–

plastic materials depend not only on the strain hardening exponent, n, as is often used to model and analyze
load and depth sensing indentation data, but also on the relative amount of elastic and plastic deformation

as characterized by the non-dimensional material parameter E=ry, the non-dimensional depth of pene-
tration, h=R, and the friction coefficient, l. The dependencies of the pile-up parameter, s=h, on E=ry and
h=R can be conveniently described by the single parameter ðE=ryÞð2hc=acÞ which approximates to the
quantity E=ry tan b used by Johnson to divide indentation into elastic, elastic–plastic transition, and fully
plastic regimes. In the elastic regime, sink-in is observed in a manner consistent with Hertzian contact

mechanics. During the elastic–plastic transition, the pile-up grows in a way that depends on the strain

hardening exponent and friction coefficient. The pile-up parameter s=h becomes constant and pile-up is
fully developed only when ðE=ryÞð2hc=acÞ > 1000, well beyond the value ðE=ryÞð2hc=acÞ � 100 that marks
the traditional beginning of the fully plastic regime based on a constant constraint factor pm=ry � 3. Thus,
in many materials, the pile-up geometry can be expected to change continuously during the course of a

spherical indentation experiment, and it is not appropriate to use results obtained from fully plastic

analyses to model it.
Due to elastic recovery, the amount of pile-up depends on whether it is measured with the indenter

loaded or unloaded. Elastic recovery is especially important at small depths of penetration and in materials

with small E=ry. Thus, when recovery is large, descriptions of pile-up based on measurements of residual
hardness impressions may not be appropriate for analyzing load and depth sensing indentation data since

load and depth sensing measurements usually apply to the fully loaded state.

Friction affects pile-up in a manner that depends on strain hardening exponent, n. For n ¼ 0, friction
reduces the amount of pile-up by as much as 50%. For n ¼ 0:5, sink-in predominates at all stages of
indentation, and friction effects are negligible.
Collectively, these observations show that the development of pile-up and sink-in during spherical

indentation is a complex phenomena that is not amenable to simple analytical descriptions. The finite

element results summarized in the plot of s=h vs. ðE=ryÞð2hc=acÞ in Fig. 13 may be used as a first estimate of
the pile-up/sink-in behavior if the material parameters E=ry and n are known.
Acknowledgements

Research at the Oak Ridge National Laboratory was sponsored by the Division of Materials Sciences

and Engineering, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle,
LLC.



3904 B. Taljat, G.M. Pharr / International Journal of Solids and Structures 41 (2004) 3891–3904
References

Biwa, S., Storakers, B., 1995. An analysis of fully plastic Brinell indentation. Journal of Mechanics and Physics of Solids 43 (8), 1303–

1333.

Bolshakov, A., Pharr, G.M., 1998. Influences of pile-up on the measurement of mechanical properties by load and depth sensing

indentation techniques. Journal of Materials Research 13 (4), 1049–1058.

Field, J.S., Swain, M.V., 1995. Determining the mechanical properties of small volumes of material from submicron spherical

indentations. Journal of Materials Research 10 (1), 101–112.

Francis, H.A., 1976. Phenomenological analysis of plastic spherical indentation. Transactions of the ASME Journal of Engineering

Materials and Technology (July), 272–281.

Hertz, H., 1896. Miscellaneous Papers by H. Hertz. Macmillan, London.

Hill, R., Storakers, B., Zdunek, A.B., 1989. A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of

London A 423, 301–330.

Johnson, K.L., 1970. The correlation of indentation experiments. Journal of the Mechanics and Physics of Solids 18, 115–126.

Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press, Cambridge, UK.

Matthews, J.R., 1980. Indentation hardness and hot pressing. Acta Metallurgica 28, 311–318.

Mesarovic, S.D.J., Fleck, N.A., 1999. Spherical indentation of elastic–plastic solids. Proceedings of the Royal Society of London A

455, 2707–2728.

Norbury, A.L., Samuel, T., 1928. The recovery and sinking-in or piling-up of material in the Brinell test, and the effect of these factors

on the correlation of the Brinell with other hardness tests. Journal of the Iron and Steel Institute 117, 673–687.

Oliver, W.C., Pharr, G.M., 1992. An improved technique for determining hardness and elastic modulus using load and displacement

sensing indentation techniques. Journal of Materials Research 7 (6), 1564–1583.

O’Neil, H., 1944. The significance of tensile and other mechanical test properties of metals. Proceedings of the Institute of Mechanical

Engineers 151, 116–130.

Pharr, G.M., 1998. Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering A 253,

151–159.

Tabor, D., 1951. The Hardness of Metals. Clarendon Press, Oxford, UK.


	Development of pile-up during spherical indentation of elastic-plastic solids
	Introduction
	Finite element simulation
	Results and discussion
	Influence of elastic deformation on pile-up
	Dependence of pile-up on penetration depth
	Dependence of pile-up on contact friction
	Combined effects of elasticity and depth of penetration
	Influences of strain hardening
	Implications for load and depth sensing indentation

	Conclusions
	Acknowledgements
	References


